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Abstract Dependencies of various physicochemical constants of organic
compounds (A) versus number of carbon atoms in the molecule within different homol-
ogous series [A = f (nC )] usually are non-linear. The simplest recurrent equation
A(n + 1) = a A(n) + b, connecting A-values for homologues (n + 1 carbon atoms)
with the values of the same constants for previous members of series (n carbon atoms),
indicates practically “ideal” linear character for most properties of organic compounds.
It is the reasonable basis for approximation (or extrapolation) any physicochemical
constants within any homologous series using the standard approach without special
selection of appropriate algebraic functions. Principal mathematical properties of the
function A(n +1) = a A(n)+b and some of its chemical applications are considered.

Keywords Organic compounds · Homologous series · Physicochemical constants ·
Recurrent function · Mathematical properties

1 Introduction

Various physicochemical constants of organic compounds (at first boiling points, Tb;
melting points, Tm; refractive indices, n20

D ; relative densities, d20
4 , etc.) are widely used

in the characterization and identification of substances up to present [1]. However, the
total multitude of organic compounds cannot be exhaustively characterized by all con-
stants. Many compounds have been synthesized only once many years ago [2] and, as
a result, such parameters as chromatographic retention indices (RI), ionization poten-
tials, standard partition coefficients (log P) and others cannot be determined for these
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“obsolete” objects. The number of isomers for higher members of homologous series
rises up very quickly [3] and, hence, most of them never been or will be synthesized.
At the same time, the properties of the simplest homologues of practically the all
series are well-characterized. Mentioned objectives explain us the significance of the
following problem: to evaluate physicochemical constants of higher homologues with
the use of available data for the first members of series.

Numerous methods of the prediction the different physicochemical constants (A)
of organic compounds elaborated until present [4] can be classified onto five principal
groups:

(i) Evaluation of the values of any properties using other constants of the same
compounds [4,5];

(ii) Comparison of the same constants for structural analogues of various series
[6–9];

(iii) Revealing of mathematical dependencies connecting the values of any proper-
ties versus the position of compounds within corresponding homologous series,
i.e., by functions A = f (nC ). In the simplest cases (e.g., for normal linear
homologues) this position can be characterized unambiguously by the number
of carbon atoms in the molecule (nC ) [4,10–14];

(iv) Estimation of empirical dependencies of various properties versus molecular
topological parameters (chemometrics approach) [15–19];

(v) Calculations using additive schemes [4,20–24].

Methods of group (i) are based on the application of various physicochemical rela-
tionships connecting different constants of the same compounds one with others [4].
The typical example is the calculations using molar refractions (MRD), which can be
estimated using additive schemes [5]:

MRD =
(

M/d20
4

) [(
n20

D

)2 − 1

] /[(
n20

D

)2 + 2

]
(1)

where M are molar masses.
The Eq. 1 allows us to evaluate density of any compound with the use of the refrac-

tive index value and vice versa.
Methods of type (ii) are based on the principle of structural analogy [6], or, by

other words, on the correlations connecting the constants of compounds of any taxo-
nomic groups (homologues, congeners) with those of members of other groups at the
equivalency of their positions within them. Most often these relationships are used
for boiling points, owing to the maximal precision of results comparing with those in
other methods. For instance, Tb(K ) values for homologues of different series can be
correlated using the following three-parameter linear-logarithmic equation [7,8]:

log T b(2) = alog T b(1) + bY + c (2)

where Y parameter providing the equivalent positions of structural analogues within
corresponding series (Y = MW, nC , MRD , number of heteroatoms, etc.), a, b, c coef-
ficients calculated by least squares method (LSM).
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Similar comparative methods are known for inorganic compounds. For example,
the linear dependence of boiling points of tetrahalogenated silanes (SiF4, SiCl4, SiBr4,

SiI4) versus boiling points of analogous tetrahalogenated methanes (CF4, CCl4, CBr4,

CI4) permits us to estimate Tb values for any compound from every of these series
using the data for corresponding analogue from another series [9]. However, this
example has no practical significance, because reference Tb values for all mentioned
compounds are known.

The use of non-linear functions A = f (nC ) (group iii) seems most convenient in
practice, but it is restricted by objective difficulties of their selection. Large part of
these equations belongs to the type of empirical relationships that means they have no
theoretical grounds at all. Namely, the most precise empirical equation for the approx-
imation of boiling points of n-alkanes in the range C1–C100 is that of Kreglewsky and
Zwolinsky [10]:

log(a − Tb) = b − cnk
C (3)

where a = 1078, b = 3.0319, c = 4.999 × 10−3, and k = 2/3.
For approximation of refractive indices and relative densities the empirical approx-

imating function A = a nk
C + b was proposed [11]. This function is applicable only to

those parameters of organic compounds, which tend not to infinity at the hypotheti-
cally infinite increase the number of carbon atoms in the molecule, but to non-infinite
limits (at the condition k < 1). The values lim A(nC → ∞) = b were evaluated for
refractive index (1.475 ± 0.003) and relative densities (0.857 ± 0.008). Four- [12,13]
and three-parameter dependencies [14] proposed for calculation of GC RIs with the
use of boiling points of organic compounds can be classified as other examples of this
approach.

The special approach has been proposed for optimization of the choice of non-lin-
ear functions for approximation of various properties of organic compounds versus
number of carbon atoms in the molecule. The search of target function for initial data
set A(nC ) in many cases can be simplified if their second numerical derivatives A′′
are taken into consideration, followed by their integrating twice. The application of
the differences of high orders is not recommended owing to their small values. If the
general regression function g′′(nC ) = A(nC − B)C can be fitted onto the data rep-
resenting the second derivatives of reciprocal boiling points (1/Tb(K )), or absolute
values of refractive indices or relative densities, then after integrating this function
twice, we get the following relationship [15]:

g(nC ) = A(nC − B)(C+2)/[(C + 1)(C + 2)] + D nC + E, (4)

where A, B, C, D, E constants.
Chemometrics approaches (group iv) imply application of empirical dependencies

A = f (x1, x2, . . ., xn), where x1, x2, . . ., xn are different molecular descriptors, like
Wiener (W) [16,17] and Hosoya (Z) [18,19] indices.

The last group of methods (v) of the evaluation of physicochemical constants is
based on long-time known additive schemes. As the illustration, so-called boiling
numbers N [20,21] should be mentioned as one of approaches in evaluation of boiling
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Fig. 1 Typical non-linear dependence of boiling points (Tb, ◦C) of perfluoro-n-alkanes versus number of
carbon atoms in the molecule (no limit at nC → ∞)

points. The resulting N values for target compounds can be summarized using the set
of atomic and group increments, N = ∑

Ni [Ni = 3.15(CH2), 3.65(CH3), 0.65(F),

3.40(Cl), 5.88(Br), 8.35(I), 4.20(Si), etc.], followed by application of empirical
equation Tb ≈ 230 N 1/3 − 270. The principal disadvantage of this relationship is
the presentation of numerical coefficients only with 1–2 valuable digits (230, 270,
1/3). Hence, in accordance with the rules of approximate calculations, the number of
valuable digits in the results cannot exceed the same value 1–2 that means the low
precision of results. Usually any additive schemes are mostly convenient for evalu-
ation of constants varying almost linearly within series (enthalpies and entropies of
formation or phase transitions [4], partition coefficients [22], etc.), or those presented
in specially linearized scales (e.g., retention indices in GC or high performance liquid
chromatography [23,24]).

The comparison of all methods indicates both advantages and disadvantages of
them, namely restricted set of variables (i), empirical choice of equations (ii, iv), low
precision (v), or non-linearity (iii). Two typical non-linear dependencies A(nC ) are
presented in graphical form on Figs. 1 and 2, namely:

– boiling points (Tb,
◦C) of perfluoro-n-alkanes versus nC (Fig. 1);

– refractive indices (n20
D , non-dimensional constant) of 1-alkanols versus nC (Fig. 2);

Similarly, these non-linear dependencies for other properties can be ascending (prom-
inent) or descending (concave). In the first case they can tend to the asymptotes (Fig. 2)
or not (Fig. 1).

It is interesting to note that within methods of all mentioned groups (i–v) no attempts
to evaluate any constants of homologues using the values of the same properties for
previous members of the same series are known up to present. The algorithms of
calculations of any constants with the use of their values for simpler homologues
should be equivalent to the application of so-called recurrent relationships [or, by
other words, equations with shifted argument(s)], namely in the following simplest
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Fig. 2 Typical non-linear dependence of refractive indices (n20
D , non-dimensional constants) of n − 1-alk-

anols versus number of carbon atoms in the molecule (tends to a limit approx. 1.457 ± 0.003 at nC → ∞)
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Fig. 3 Linear dependence Tb(n+1) = a Tb(n)+b of boiling points (◦C) of perfluoro-n-alkanes Cn F2n+2 :
a = 0.872 ± 0.005; b = 31.8 ± 0.4; ρ = 0.9999; S0 = 1.1

form of recurrent equation of the first order:

A(n + 1) = a A(n) + b (5)

where the coefficients a and b are calculated by LSM.
Surprisingly, this relationship provides an excellent linear approximation practi-

cally for all known physicochemical constants of homologues within various
series, but never been proposed or used in organic or physical chemistry up to now. It
can be illustrated by examples of boiling points of perfluoro-n-alkanes (Fig. 3, com-
pare with non-linear dependence on Fig. 1) and refractive indices (n20

D ) of n-alkanes
(Fig. 4, compare with Fig. 2). In both cases correlation coefficients (ρ) exceed 0.999.
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Fig. 4 Recurrent linear dependence n20
D (n + 1) = a n20

D (n) + b of refractive indices (non-dimensional
constants) of n-alkanes Cn H2n+2: a = 0.804 ± 0.008; b = 0.154 ± 0.006; ρ = 0.9997; S0 = 0.0007

This first time revealed fact means that two problems can be solved very simply using
this approach. One of them is prediction of A-values for previously non-characterized
members of series. Another one is the possibility of verification of known data by their
comparison with data for other (neighbor) homologues.

This paper is devoted to the discussion of principal mathematical properties of recur-
rent equations and application of approach based on these relationships for approxi-
mation the various constants of organic compounds.

2 Processing and presentation of physicochemical data (experimental)

The values of physicochemical constants of organic compounds were taken prefera-
bly from Beilstein reference edition [2], as well as from all others available reference
books [25–28]. Usually few alternative values of any constant of the same compound
are not equal one each others and can be presented with unequal precision. The unit
of the last valuable digits was considered as the measure of data precision (if it is
not indicated specially). For instance, boiling point of 1-fluorohexane 93.15 ◦C cor-
responds to the precision 93.15 ± 0.01 ◦C, whilst boiling point of n-decyl benzene
(298 ◦C)—only 298 ± 1 ◦C. If any constants are presented as intervals, the average
values within them were chosen, namely like in the case of methyl undecanoate boil-
ing point (247–249 ◦C): accepted value is 248 ◦C. However, if these intervals were
too broad, additional corrections with the use of the method under discussion were
made. For example, it was actual for butyl carbonochloridate (138–145 ◦C), or octanal
(163–174 ◦C). The values 130 and 171 ◦C correspondingly were accepted for these
compounds, because they are in the better coincidence with Tb values for neighbor
homologues.

Hence, when few data for the same constant were available, most frequent values
or those with maximal number of valuable digits have been chosen preferably.
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The calculation of the parameters of linear regression was performed by the plotting
software ORIGIN 4.1. Solution of recurrent equation (5) was achieved with the use
of MAPLE software (version 7).

Retention times of n-alkanes C5–C13 were experimentally measured using Bio-
chrom-1 gas chromatograph (Moscow, Russia) with flame ionization detector and
quarts WCOT column (51 m × 0.23 mm) with OV-101 at isothermal conditions (110,
120, and 130 ◦C).

3 Some mathematical properties of recurrent relationship
A(n + 1) = a A(n) + b

For chemical purposes (prediction or verification of physicochemical constants) it
seems simpler and more convenient to use Eq. 5 in its native form. Nevertheless, for
better understanding its mathematical sense various forms of this equation should be
characterized.

The Eq. 5 has the following algebraic solution, which can be easily found using
MAPLE software:

A(n) = k an + b(an − 1)/(a − 1), (6)

where n the number of carbon atoms in the molecule of homologue, a, b, k constants;
(an − 1)/(a − 1) = an − 1 + an−2 + · · · + 1.

Few noticeable consequences on the application of approach under consideration
can be derived from this solution. At first, if a ≡ 1, b �= 0, Eq. 6 transforms into
A(n) = k + bn, that is simple arithmetical progression. At the same time, at 0 <

a �= 1 and b ≡ 0 this equation converts into expression for geometric progression,
A(n) = kan . Hence, initial recurrent function (5) generalizes the properties of both
kinds of progressions, that is one of the explanation of its high approximating power.

Secondly, if the Eq. 6 can be presented as a row A(n)=kan+b[an−1+an−2+· · ·+1],
the degree of this polynomial (n) is different for every member of
series A(1), . . ., A(n). It is the principal difference of data approximation be recur-
rences comparing with well known approximation be polynomials of constant degrees
A(n) = 1 + a1n + · · · + amnm (m = const).

Thirdly, two limiting values of any properties A seem important in chemistry,
namely those at the hypothetical zero number of carbon atoms in the molecule (low
limit) and at the hypothetically unrestricted increasing of number of carbon atoms
(high limit). For the hypothetical “zero” members of any homologous series (n = 0)
A(0) = k.

The presentation of formula (6) in the form of the row explains us the existence of
limits of A(n) values at n → ∞ only for a < 1. Hence, depending on the values of
coefficients a, at the hypothetical increasing the number of carbon atoms in the mol-
ecules of homologues (nC → ∞), the values of function A(nC ) can tend to infinity
(at a > 1), or to a limit (only at a < 1):

lim A(nC → ∞) = b/(1 − a) (0 < a < 1) (7)
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This mathematical property of function (2) seems very important, because it allows
us to subdivide all physicochemical constants of organic compounds onto two types:
some of them theoretically tend to infinity at nC → ∞, but another part—to non-infi-
nite limits, namely:

Having no limits at nC → ∞(a > 1) Having limits at nC → ∞(a < 1)

Boiling point [11,15]* Refractive index [11,15]
Critical temperature Density [11,15]
Viscosity Surface tension
Partition coefficient Critical pressure
Chromatographic retention index Ionization potential

Dielectric constant
Dipole moment

Boiling point (*) is the single exception from this general rule. In accordance with
physicochemical sense, these constant has no limits at nC → ∞ (practically Tb values
are restricted by thermal decomposition of compounds), while for most of series of
normal linear homologues the values of coefficients a are slightly less than 1, that is
equivalent to the existence the “false” limits of boiling points around 550 ◦C.

As it was mentioned in Introduction, non-linear dependencies A(nC ) for various
physicochemical properties of organic compounds can be ascending or descending.
The ascending dependencies A(n) are characterized by inequality A(n+1)−A(n) > 0.
The subtraction relation (6) for A(n) from those for A(n + 1) gives the inequality
kan+1 + ban > kan . Dividing both parts of this inequality on an > 0 we receives
ka + b > k, or k(a − 1) + b > 0. Keeping in mind that k = [A(1) − b]/a the last
expression can be transformed into the following condition of ascending:

A(1)(1 − 1/a) + b > 0 (8)

Besides of the application of general relationship (5), another recurrent procedure can
be proposed for the calculation of constants of higher homologues using the data of
previous members of series. Equation 5 can be rewritten for any two consecutive pairs
of homologues, as:

A(n) = a A(n − 1) + b; A(n − 1) = a A(n − 2) + b,

It gives the following expressions for coefficients a, and b:

a = [A(n) − A(n − 1)]/[A(n − 1) − A(n − 2)];
b = [A(n − 1)2 − A(n) × A(n − 2)]/[A(n − 1) − A(n − 2)]

Finally we receive another recurrent formula for calculation of any properties of
homologues with the use of the data for three previous members of series:

A(n + 1) = {A(n − 1)2 + A(n)

×[A(n) − A(n − 1) − A(n − 2)]}/[A(n − 1) − A(n − 2)] (9)
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However, the relationship based on the data only for three homologues provides
less precision of extrapolation comparing with general equation (5). Nevertheless, the
expression for coefficient a (the ratio) allows for an important conclusion for practical
application of approximations based on the recurrent relationship (5): all data under
processing can be expressed in any units and it is not necessary to convert them into
standard scales. For example, boiling temperatures can be presented not only in Celsius
(◦C), but in Kelvin (K), as well as Fahrenheit or Reaumur degrees.

Another noticeable feature of recurrences should be pointed out. If recurrent rela-
tionship of the first order A(n + 1) = a A(n) + b is correct for any set of data, all
recurrences of higher orders A(n + k) = a A(n) + b(k > 1) should be correct, as
well. If the set of data can be approximated by second order recurrences (see Sect. 5),
the relationships of only even orders are correct in these cases.

4 Mathematical applications

Besides simplest arithmetical and geometric progressions, recurrent function (5) is
applicable for other dependencies of equidistant values of arguments. Equation 6 at
k = 0, b = 0 and a = e = 2.71828. . . can be used in processing of exponential data,
y = ex or y = ax in general case (a �= e). Thus, the same recurrent relationship (5)
is fulfilled simultaneously both for dependencies y = x and for y = ax . This fact
leads to very interesting conclusion: the same equation should be correct for function
y = log(x), which is illustrated by following examples.

It easy to verify that recurrent approximation is applicable for factorials y = n!.
For more uniform distribution of points, this function is better to consider in the form
y = log(n!), that is recurrent function by definition, log(n+1)! = log(n)!+log(n+1).
Few dozens points at the plot on Fig. 5 illustrate this linear dependence (ρ = 1).
This recurrent mode of factorial’s evaluation at high n sometimes seems to be more
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Fig. 5 Recurrent linear dependence log(n + 1)! = a log(n)! + b : 11 ≤ n ≤ 49; ρ = 1.0; S0 = 0.042;
a = 1.010 ± 0.000; b = 1.113 ± 0.015
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Fig. 6 Recurrent linear dependence of Fibonacci numbers F(n + 1) = a F(n) + b: 25 points; ρ = 1.0;
S0 = 0.16; a = 1.618 . . .; b = 0.018 ± 0.036 → 0

convenient then well known Stirling’s approximation (see, e.g., http://mathworld.
wolfram.com/stirlingApproximation.html).

Additionally, recurrent equation (5) is suitable for the linear approximation of Fibo-
nacci numbers (F) [29] belonging to the row 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …;
[F(i + 2) = F(i + 1) + F(i) at F(0) = 0, F(1) = 1, see, e.g., http://en.wikipedia.
org/wiki/Fibonacchi_number]. The plot illustrating linear dependence F(n + 1) =
aF(n)+b is presented on Fig. 6. At the increase of the number of points taken into con-
sideration the coefficient a tends to the value of so-called “golden cut” (1.61803…),
and coefficient b tends to zero, b → 0. Similarly to factorials, the same type of lin-
ear recurrent dependence observed not only for Fibonacci numbers themselves, but
for their logarithms (excluding first zero point), that is illustrated by plot on Fig. 7
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Fig. 7 Recurrent linear dependence log F(n +1) = a log F(n)+b : 3 ≤ n ≤ 25; ρ = 0.99996; S0 = 0.03;
a = 1.003 ± 0.002; b = 0.466 ± 0.013
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(ρ = 0.99996). Various analogues of Fibonacchi numbers (Tribonacchi, Tetranacchi,
etc.) can be approximated by the same recurrences. For example, parameters of Eq. 5
for the series of so-called Lucas numbers [the row 2, 1, 3, 4, 7, 11, 18, 29, 47, 76,
123, 199, …; L(i + 2) = L(i + 1) + L(i) at L(0) = 2, L(1) = 1, see, e.g., http://
en.wikipedia.org/wiki/Lucas_number] are the same as those for Fibonacchi numbers:
a → 1.61803. . . (golden cut), b → 0. The logarithms of Lucas numbers can be
approximated by the same way.

The possibility of approximation of Fibonacci numbers it’s not only of the theo-
retical significance. An important kind of molecular topological parameters, namely
Hosoya’s indices (Z ) [18,19] possess by the properties of Fibonacchi numbers. For
the organic compounds of simplest molecular topology—n-alkanes—Z -values are
equal to F(n)-values. Therefore, discussed approach based on recurrent relationships
can be also applied in estimation of topological molecular parameters. Recurrent rela-
tionship (5) provides an appropriate linear approximation of Wiener indices [16,17].
Namely, for n-alkanes C7–C15 their values are 56(7), 84(8), 120(9), 165(10), 220(11),
286(12), 364(13), 455(14), 560(15), …, that corresponds to the following parameters
of recurrent equation: ρ = 0.99992; S0 = 2.1; a = 1.185 ± 0.007; b = 23.3 ± 1.8.

An example of more chemical nature is the number of structural isomers of homo-
logues, which can be approximated by linear recurrent regression of general type (5)
as well. For instance, in the alkane series the quantity of isomers depending on the
number of carbon atoms in the molecule N (nC ) is 1(1), 1(2), 1(3), 2(4), 3(5), 5(6),
9(7), 18(8), 35(9), 75(10), 159(11), 355(12), 802(13), 1858(14), 4347(15), … [3]. To
further advocate our approach we note the work by Henze and Blair [30] devoted to
the elaboration of algorithm to predict the number of isomers N (nC ) of alkane series.
The authors have proposed the complex calculation procedure and pointed out that
it includes the elements of recurrent calculations. Hence, it is the ground for general
recurrent relationship (5) to be correct in this case. The plot illustrating linear depen-
dence N (n+1) = a N (n)+b is presented on Fig. 8, that can be considered as a reason
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Fig. 8 Recurrent linear dependence of number of isomers of alkanes N (n + 1) = a N (n)+ b: 8 ± n ± 14;
ρ = 0.99998; S0 = 9.5; a = 2.345 ± 0.006; b = −16 ± 4
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Fig. 9 Typical non-linear dependence of wine dropping time from empty bottle versus number of drop
(the sample of red Crimean dessert wine “Massandra”, experimental data)

for new way of evaluating of the number of isomers for high members of series. If the
linear recurrent dependence (5) is correct for N (nC ) values, it should be correct for
log N (nC ) values.

It’s easy to demonstrate that if the set of data can be approximated by polynomials
of degrees m ≥ 2: A(n) = 1 + a1n + · · · + amnm , recurrent relationships like (5)
are incorrect in these cases. Hence, the application of recurrent approximation seems
to be most important for data sets which cannot be effectively approximated by poly-
nomials, like it is for most of physicochemical constants of organic compounds. In
general, there are no contradictions between mentioned approaches and they supply
each other.

The predestination of the last illustration (not mathematical) is to demonstrate the
possibility of extrapolation of real complex functional dependence, when we know
nothing about it. One of the most complex examples is the linearization of non-linear
dependence of the time of wine dropping from empty bottles. The plot of this depen-
dence for red Crimean dessert wine “Massandra” (35 drops were observed during
the time of about five minutes after the bottle became empty) is presented on Fig. 9.
Indeed, it is impossible to propose ab initio any reasonable approximation function
for this process. However, it is not necessary to choose any special function for these
data, because the equation tdrop(n + 1) = atdrop(n) + b seems to be correct even in
this case. The linear plot presented on Fig. 10 confirm this conclusion unambiguously
(ρ = 0.9995). It means that we can predict the time of next drop falling for any
liquids with high reliability with the use of the information about previous dropping
times.

5 Chemical applications

The success of the application of recurrent equations in the estimation of physico-
chemical properties is due to the fact that the latter are depended on the number of
carbon atoms in the molecule that is the integer argument by definition.
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Fig. 10 Recurrent linear dependence tdrop(n + 1) = atdrop(n) + b of wine dropping time from empty
bottle (compare with Fig. 9): a = 1.139 ± 0.007; b = −0.8 ± 0.5; ρ = 0.9995; S0 = 1.8

So far as the recurrent function A(n+1) = a A(n)+b possesses the high “approxi-
mation power”, it is not surprising that it provides the linearization of the dependencies
of any physicochemical constants versus number of carbon atoms in the molecules
of organic compounds within homologous series. Two examples (boiling points of
perfluoro-n-alkanes and refractive indices of n-alkanes) have been depicted in Figs. 3
and 4. The similar practically “ideal” linear dependencies are observed for other
properties of organic compounds (critical temperatures, critical pressures, densities,
viscosities, surface tensions, vapor pressures, dielectric constants, ionization poten-
tials, partition coefficients in heterophaseous systems, solubilities, chromatographic
retention indices, etc.) [31]. In accordance with the above mentioned features, recur-
rent relationship (5) should be correct not only for dependencies of the type of A(nC ),
but also for log[A(nC )], and can be used in this form for all properties of organic
compounds, if necessary.

Some examples of this approach have been collected in Table 1. A large amount of
the properties is represented by the data of n-alkanes because this series is character-
ized by the most reliable constants. More than hundred homologous series have been
characterized by recurrent dependencies of boiling points, and no exceptions were
revealed. In all cases correlation coefficients exceed 0.999. Moreover, the approach
under discussion has been already used for correction of erroneous or misprinted val-
ues of constants [31,32], meaning that it provides an effective way for the calculation
of any constants for higher homologues using available data for previous members of
series without special selection of approximation functions.

An illustrative example of the proposed approach will be given by estimation the
boiling points of some perfluorocarboxylic acids Cn F2n+1CO2H. For the first eight
members of series they are [33]: 72.4 ◦C(CF3CO2H), 96.4 (C2F5), 120–122 (C3F7),
144.6 (C4F9), 162.7(C5F11), 178.4 (C6F13), 190 (C7F15), and 202.4 (C8F17). No
data for perfluorodecanoic acid C9F19CO2H is available at present. Surprisingly, the
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reference Tb value for perfluoroundecanoic acid C10F21CO2H seems too high (245 ◦C)
[33] comparing to data of previous members of series. The application of recurrent
relationship (5) confirms the existence of linear dependence Tb(n + 1) = aTb(n) + b
for C2–C9 homologues (a = 0.845 ± 0.011; b = 40.8 ± 1.8; ρ = 0.9996, S0 = 0.9).
After that we can precalculate unknown Tb value for C9F19CO2H by simple way using
reference Tb value for previous homologue

Tb(C9F19CO2H) ≈ 0.845 × 202.4 + 40.8 ≈ 212 ◦C

and, moreover, to correct suspicious boiling point for C10F21CO2H by applying the
same recurrent calculations twice:

Tb(C10F21CO2H) ≈ 0.845 × 212 + 40.8 ≈ 220 ◦C

Hence, the reference boiling point of this compound (245 ◦C) [33] seems erroneous
and should be reconsidered.

Besides that, within Tb interval for perfluorobutanoic acid (C3F7CO2H,

120−122 ◦C) the point providing the best agreement with data for other homologues
can be defined more precisely, that is 122 ◦C.

Only one kind of the important physicochemical constants of organic compounds is
not presented in Table 1. It is melting point (Tm) demonstrating strong alterating effects
for homologues with even and odd carbon number in the molecules. No attempts to
approximate these dependencies by polynomials A = f (nC ) are known up to present
owing to their objective complexity. Moreover, the homologous variations of these
constants cannot be approximated by recurrent equation (5) of the first order.

The plot of initial non-linear dependence Tm(nC ) on the example of melting points
of strait chain carboxylic acids Cn−1 H2n−1CO2H is presented on Fig. 11. It is easy to
observe two “sub-families” of points belonging to two sub-groups of homologues. The
upper set of points (highest melting points) belongs to compounds with even number

0                  5                10                15                20

-40

-20
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20

40

60

80

T
m

, 
0
C

Number of carbon atoms in the molecule

Fig. 11 Typical dependence of melting points of carboxylic acids (Tm, ◦C) versus number of carbon atoms
in the molecule. No linearity and strong alterating effects are observed
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Fig. 12 Graphical illustration the absence of linear dependence of melting points of carboxylic acids (Tm,
◦C) versus melting points of previous homologues. Two linear sub-dependences for compounds with even
and odd carbon atoms in the molecules are observed

of carbon atoms in the molecule, whilst the low set (smallest melting points)—to the
compounds with odd number of carbon atoms. The approximation of all these data by
recurrent function of the first order (5) gives two unequal sub-dependencies, which
can be presented (if necessary) by two separate linear regressions with different coeffi-
cients a and b (Fig. 12). The example becomes more interesting when members of the
same homologous series exhibit so different properties. However, even this complex
dependence can be approximated by single recurrent equation not the first, but the
second order:

A(n + 2) = a A(n) + b (10)

The linear plot of this recurrent dependence (ρ = 0.998) is presented on Fig. 13. In
this form both “sub-families” of data are characterized by the same regression coeffi-
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Fig. 13 Single linear recurrent dependence Tm(n + 2) = a Tm(n) + b of melting points of carboxylic
acid: a = 0.799 ± 0.014; b = 19.3 ± 0.6; ρ = 0.998; S0 = 1.5
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cients, that permits us to precalculate melting points for higher member of this series
and correct previously known values with errors not more than ± 1–2 ◦C (the value
of dispersion S0 = 1.5 can be used as the average approximate measure of estimated
precision of interpolation or extrapolation).

The algebraic solution of equation (10), which can be easily obtained using MAPLE
software, is much more complex than that for standard recurrent equation (5) and it
is not discussed here. However, its mathematical analysis gives the same (as that for
Eq. 7) limiting values at nC → ∞, namely lim A(nC → ∞) = b/(1 − a).

The existence of general recurrent function (5) explains us a lot of new possibili-
ties of approximation of physicochemical constants of organic compounds. It can be
used not only within the series of so-called normal linear homologues (any types of
compounds R-X with variable n-alkyl fragments in the molecules), but in the cases
of multi-row homology (any types of compounds of general formulas R2Y, R3 Z , etc.,
when two, three, or more alkyl chains are varied simultaneously). Moreover, the same
approach can be generalized onto homologues with branched carbon skeletons and on
the so-called “cyclic” homology (when the variable structural parameter is the frag-
ment of carbo- or heteroatomic rings in the molecules). It remains to be correct not
only for compounds with homologous difference CH2, but for compounds with other
variable structural fragments, namely CF2, CCl2, CH2CH2O, SiF2, Si(CH3)2O, etc.
However, all these possibilities (important for organic chemistry) will be the subject
of future studies.

Numerical chemical applications of recurrent relationships require the explana-
tion of general problem: what is the physicochemical sense of this approach? At this
moment there are no theoretical grounds to explain so universal character of recur-
rences in relation to approximation of various constants of homologues. Of course, the
nature of various physicochemical properties is different. However, the regularities of
their variations within homologous series seem as much as identical, that they can be
approximated by single simplest recurrent equation.

6 Chromatographic applications

One of the clearest examples on the advantages of recurrent algorithms is provided by
the typical problem of the evaluation of the data obtained from gas chromatography.
The determination of retention indices requires reference compounds (n-alkanes) to
be added into analyzed samples. Sometimes (especially for complex mixtures sepa-
rated using capillary columns) it is difficult to recognize chromatographic signals of
some of these reference compounds among peaks of other components. The method
of evaluation of their retention times should be used.

Theoretically this method is well known [34]. There is general dependence between
retention times of homologues and number of carbon atoms in the molecules:

log(tR − t0) = anC + b (11)

where t0 is the hold-up time of chromatographic system.
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Using the data set for known (reliably identified) reference components, coefficients
a and b can be calculated by LSM and used for evaluation of retention times of other
members of the same series. However, this method requires preliminary evaluation
parameter t0 using the data for three consecutively eluted homologues (tR1, tR2, and
tR3):

t0 ≈ (t2
R2 − tR1 × tR3)/(tR1 + tR3 − 2tR2) (12)

It is highly surprising that these two theoretically correct equations lead to receiving
the results deviated by inevitable experimental errors, that can be illustrated by data
presented in Table 2 (method I).

An alternative recurrent procedure of calculations (II) looks much simpler. It implies
direct processing of initial tR data set using relationship (5), i.e., tR(n+1) = atR(n)+b.
No calculations of hold-up time, conversion of raw tR-values into net retention times
(tR − t0) and calculation of their logarithms are required. As a consequence of this
simplification of the calculation procedure the results become much more precise, that
can be illustrated by comparison with experimental data (method II, Table 2). Absolute
errors of the prediction of retention times of n-undecane by the method (I) are −0.22,
+0.37, and +0.37 min, and by the method (II)—+0.05, +0.03, and 0 min, respectively.
The application of both methods for next homologue (n-dodecane) gives more dra-
matic picture: −0.59,−1.03, and +1.06 min (method I), that is absolutely unacceptable
for capillary columns, against only +0.19, +0.02, and +0.02 min in method (II). It is
undoubtedly, that only recurrent extrapolation should be recommended for evaluation
of retention times of next homologue (n-tridecane, the difference in the number of
carbon atoms from last recognized compounds—n-decane—is three), when the errors
are +0.10, +0.40, and +0.22 min.

It is important to note, that only recurrent procedure permits us to solve the same
problem in temperature programming regimes, when Eqs. 11 and 12 have no sense.

The new modification of the known method of chromatographic quantitation—that
of double internal standard—based on the recurrent interpolation of the properties of
homologues has been proposed recently [35]. It permits us to neglect significant losses
both analytes and standard at all procedures of sample preparation and provide the
high precision of results in spite of these losses.

The content of this paper has been presented in the lecture on ICCMSE-2005 [36].

7 Conclusion

The number of applications of recurrent relationships in chemistry seems to be highly
large. This approach can be used not only for approximation of physicochemical
constants of organic compounds, but for processing other data without information
about the origin of functional dependencies. The single demand for its application is
equidistant sets of argument values.

The applicability of recurrences for various properties of organic compounds can
be interpreted by different manners. At first, this kind of dependencies can be con-
sidered as universal mathematical regularity in chemistry. Secondly, it is equivalent
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to the existence of new “hyper-property” of organic compounds. Finally, summariz-
ing all aspects of this approach, the following general chemical regularity should be
postulate, for example in the following form: the values of most properties of organic
compounds indicate the linear dependences upon the values of the same properties of
previous members of homologous series.

Acknowledgments Author acknowledges Ph.D. Anatoly N. Marinichev (Chemical Research Institute of
St. Petersburg State University) who pointed out the existence of algebraic solution of recurrent equation.
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